5個章節 / 43個單元 / 14小時45分鐘27秒
第 1 章:Course Introduction
第 2 章:Conditional Probability and Exceptation
第 3 章:Markov Chains
第 4 章:The Exponential Distribution and the Poisson Process
第 5 章:Continuous-Time Markov Chains
課程介紹
課程總時長| 14小時45分鐘27秒
單元數| 5個章節 43個單元

Brief course descriptions

This course is for students to achieve the following goals: To develop an ability to model dynamical processes as stochastic processes; To develop an understanding of important qualitative characteristics of stochastic processes; To develop an ability to analyze basic stochastic processes.

Course keywords

高等機率, 隨機模式, 高等統計, 模擬, 馬可夫鏈

Prerequisites

IEEM203000 (Engineering Statistics) or equivalent basic probability course.

Textbook

Introduction to Probability Models, 10th Ed. by Sheldon M. Ross, Academic Press, 2009 (or the newest version).

Course Topics

Chapter 3. Conditional Probability and Conditional Expectation

Chapter 4. Markov Chains

Chapter 5. The Exponential Distribution and the Poisson process

Chapter 6. Continuous-time Markov Chain (CTMC)

Chapter 7. Renewal theory and its applications

Chapter 8. Queueing Theory

課程章節
第 1 章:Course Introduction
單元 1 - Outline of the course
21:03
單元 2 - Preliminaries
28:17
單元 3 - Preliminaries (2)
48:15
單元 4 - Basic Nature of Stochastic Processes, Explanation of Lecture Materials
25:31
第 2 章:Conditional Probability and Exceptation
單元 1 - Conditional Probability and conditional pdf
20:44
單元 2 - Examples and Exercise Problems
57:21
單元 3 - More Examples (Reliability)
01:00:17
單元 4 - The Ballot Problem
14:24
單元 5 - More about Conditional Expectation and Example
10:13
單元 6 - Some Probability Inequalities
15:29
單元 7 - Limit Theorems
13:53
第 3 章:Markov Chains
單元 1 - Definition, Terminologies and Examples
14:59
單元 2 - Chapman-Kolmogorov Equations and Examples
10:59
單元 3 - Uncondtional Distribution of the State at Time n, Classification of States, Examples
27:48
單元 4 - Proposition, Corollary and Examples
12:45
單元 5 - The Gambler's Ruin Problem
16:01
單元 6 - 1D-Random Walk, 2D-Random Walk
41:59
單元 7 - 2D-Random Walk (2)
13:52
單元 8 - 1D Inhomogeneous Random Walk
13:53
單元 9 - Limiting Probabilities (Stationary Distribution), Periodicity
25:58
第 4 章:The Exponential Distribution and the Poisson Process
單元 1 - Introduction of Exponential Distribution
19:03
單元 2 - Properties of Exponential Distribution
10:00
單元 3 - Examples and a Further Question
30:51
單元 4 - Hyperexponential Distribution and More about the Exponential Distribution
21:52
單元 5 - Convelution of Exponential Random Variables, Proposition
15:25
單元 6 - Counting Process and Poisson Process
09:44
單元 7 - Theorem of Poisson Process
08:05
單元 8 - Definition, Another Way to Define Poisson Process, Interarrival and Waiting Time Distributions
10:57
單元 9 - Further Properties of Poisson Process, the Coupon Collecting Process
29:40
單元 10 - Continuation of the Coupon Collecting Process
14:49
單元 11 - Question involving two Poisson processes
10:51
單元 12 - Conditional Distribution of the Arrival Times
06:35
單元 13 - Remark about the Conditional Distribution of the Arrival Times
08:25
單元 14 - Sampling a Poisson Process, Example of an Infinite Server Queue
22:08
單元 15 - More Examples
28:59
單元 16 - Nonhomogeneous Poisson Process
15:01
單元 17 - Compound Poisson Process
10:28
第 5 章:Continuous-Time Markov Chains
單元 1 - Introduction
09:45
單元 2 - Birth and Death Processes
39:10
單元 3 - A General Birth and Death Process
09:46
單元 4 - The Transition Probability Function, Lemma
13:11
單元 5 - Chapman-Kolmogorov Equations
20:26
單元 6 - Kolmogorov's Forward Equations
26:35
作業上傳
查看更多
檔案下載
本課程無檔案
張國浩 教授

> 工業工程與工程管理學系

> 研究領域

大數據分析、隨機最佳化、蒙地卡羅模擬、應用機率與統計

✉️ E-mail

👨‍🏫 Introduction

🌐 Personal Website