7個章節 / 61個單元 / 35小時43分鐘44秒
第 1 章:Course Introduction
14:15
第 2 章:Vector Calculus
第 3 章:Fourier Analysis
第 4 章:Sturm-Liouville Problem (Theory)
第 5 章:Partial Differential Equations
第 6 章:Heat Equation
第 7 章:Complex Analysis
課程介紹
課程總時長| 35小時43分鐘44秒
單元數| 7個章節 61個單元

Brief Description
Mathematical tools are essential in analysis and prediction for a wide range of engineering problems. Engineering mathematics is a post-calculus course for undergraduate students. It extends the discussion to various types of differential equations and advanced topics. Through class lectures, homework assignments, and exams, you will acquire the knowledge on some but not all the equations with engineering interest and be ready to utilize it in engineering problems such as fluid mechanics, solid mechanics, control theory, etc. Furthermore, you should have a good grasp of the physical meaning behind the math and be able to interpret the solution. This is a two-semester series.

Course keywords
vector calculus, Fourier analysis, partial differential equations, complex analysis

Textbook 
Kreyszig, "Advanced Engineering Mathematics", abridged version 10th ed., John Wiley (2018)

Syllabus 
1. Vector calculus 
2. Fourier series and integral 
3. Fourier transform
4. Sturm-Liouville problem 
5. Partial differential equations 
6. Complex analysis

課程章節
第 1 章:Course Introduction
單元 1 - Course Information
14:15
第 2 章:Vector Calculus
單元 1 - Vector Functions (1)
40:12
單元 2 - Vector Functions (2)
19:32
單元 3 - Curve in 3D Space
25:30
單元 4 - Example of 3D curve
46:31
單元 5 - Differential Operators: Intro
03:30
單元 6 - Differential Operators: Gradient
43:13
單元 7 - Differential Operators: Divergence
31:59
單元 8 - Differential Operators: Curl
21:48
單元 9 - Differential Operators: Curl (2)
21:52
單元 10 - Line Integrals
30:04
單元 11 - Line Integrals: Path Independence
44:16
單元 12 - Green's Theorem
52:56
單元 13 - Surface Integrals
52:28
單元 14 - Flux Integrals
34:04
單元 15 - Gauss' Divergence Theorem
31:48
單元 16 - Stokes Theorem
10:00
單元 17 - Stokes Theorem (2)
45:05
第 3 章:Fourier Analysis
單元 1 - Introduction
10:16
單元 2 - Function space, orthogonal basis
53:43
單元 3 - Function space, orthogonal basis (2)
33:41
單元 4 - Convergence of Fourier Series
11:36
單元 5 - Example
31:18
單元 6 - Even and Odd Function
17:59
單元 7 - Half-range Expansions
24:37
單元 8 - Complex Fourier Series
24:39
單元 9 - Fourier Integrals
24:48
單元 10 - Fourier Integrals (2)
57:19
單元 11 - Fourier Transform: Definition
27:06
單元 12 - Fourier Transform: Variation
14:10
單元 13 - Fourier Transform: Properties
09:22
單元 14 - Fourier Transform: Properties (2)
51:21
單元 15 - Fourier Transform Pairs
15:16
單元 16 - Transform of Some Elementary Functions
43:43
單元 17 - Discrete Fourier Transform (DFT)
49:04
第 4 章:Sturm-Liouville Problem (Theory)
單元 1 - Introduction, Cases Discussion
53:53
單元 2 - The Solution of S.-L. Problems
52:20
單元 3 - Examples
49:46
第 5 章:Partial Differential Equations
單元 1 - Basic Concepts of PDEs
23:30
單元 2 - Wave Equations
24:48
單元 3 - 1D Wave Equations
53:47
單元 4 - 1D Wave Equations (2)
48:06
單元 5 - Demonstration of Examples
31:08
第 6 章:Heat Equation
單元 1 - Introduction
23:58
單元 2 - 1D Heat Equation and Application to Non-homogeneous Problem
44:52
單元 3 - 1D Heat Equation for an Infinite x-Domain
49:51
單元 4 - 2D Heat Equation and Steady-State Solution
50:31
單元 5 - Laplace Equation in 2D
52:40
單元 6 - Laplace Equation in 2D (2)
28:35
單元 7 - 2D Equations
51:51
單元 8 - 2D Wave Equations in Polar Coordinates
55:23
單元 9 - Laplacian in Spherical Coordinates
47:18
第 7 章:Complex Analysis
單元 1 - Basic Concepts of Complex Number and Complex Plane
30:58
單元 2 - Complex Function
23:44
單元 3 - Cauchy-Riemann Equations and Potential Theory in Complex Functions
54:41
單元 4 - Introduction to Analytic Functions and Complex Integration
22:20
單元 5 - Complex Integration and Introduction to Cauchy's Integral Theorem
52:00
單元 6 - Cauchy's Integral Theorem
41:56
單元 7 - Terminology in Cauchy's Integral Theorem: Zeros, Poles, and Singularities
18:29
單元 8 - Residue Theorem and Case Analysis of Complex Poles
30:55
單元 9 - Applying the Residue Theorem to Evaluate Real-valued Integrals
57:23
作業上傳
查看更多
檔案下載
本課程無檔案
張敬 教授

> 動力機械工程學系

> 研究領域

流場中渦流(vortex)的運動及動力學,相關工程應用包含再生能源、仿生力學工程等。

️ E-mail

👨‍🏫 Introduction

📹 Lab